Site of Yrenylation in Anthraquinone Biosynthesis in Cell Cultures of *Caliurn mollugo*

By KENICHIRO INOUE,⁸ YOSHINORI SHIOBARA,⁸ HIDEKAZU NAYESHIRO,⁸ HIROYUKI INOUYE,⁸ GRAHAM WILSON,^b **and MEINHART H. ZENKC**

(a *Faculty of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto* **606,** *Japan,* **b** *Department of Botany, Unavevstty College, Dublin* **4,** *Ireland, and* **C** *Lehrstuhl fur Pjianzenphysiologie, Ruhr- Universatat Bochurn,* **04630** *Bochum, West Germany)*

Summary **The mode of prenylation during the biosyn- cultures of** *Galium mollugo,* **to which 4-(2'-[CI3]carbthesis of lucidin primeveroside was elucidated by locating the 13C-label in lucidin primeveroside isolated from cell**

oxyphenyl)-4-oxobu tanoic acid was administered.

RUBIACEAE are known to be a rich source of anthraquinones.¹ Recently, several anthraquinones²⁻⁵ have also been isolated from cell cultures of the plants *Morinda citrifolia* L. and *Galium mollugo* L. belonging to this family. Feeding and degradation experiments with 14C-labelled substances indicated that these anthraquinones, especially alizarin **(l),** purpurin **(2),** and morindone **(3),** are biosynthesized from mevalonic acid and $4-(2'-carboxyphenyl)-4$ oxobutanoic acid **(6).** The intermediate **(6)** is derived from shikimic acid and 2-oxoglutaric acid, and prenylation during the biosynthesis of the anthraquinones is known to occur at the position corresponding to C-3 of (6).⁶⁻⁹ On the other hand, naphthoquinone congeners such as catalpalactone $(4)^{10}$ and menaquinone $[MK-9 (II-H₂)](5),$ ¹¹ also derived from the same biosynthetic precursor **(6),** are known to be formed by prenylation at the position corresponding to **C-2** of **(6).**

SCHEME

We therefore attempted to verify the mode of prenylation during the biosynthesis of anthraquinones in Rubiaceous plants with the aid of 13C-labelling techniques using cell cultures of G. *mollugo,* which produce lucidin primeveroside **(9)** as the main product. **4-(2'-[13C]Carboxyphenyl)-4** oxobutanoic acid **(6),** prepared according to the synthetic

method used for the corresponding ¹⁴C-labelled compound,¹⁰ was administered to a cell suspension of G. *mollugo,* which had been cultured in a continuous culture system and was further incubated for six days. The ethanolic extract of the cultured cells (dry weight **11.66** g) was fractionated by droplet counter-current chromatography12 yielding 25 mg of lucidin primeveroside **(9)**, m.p. $210-212 \degree C$, $[\alpha]_D^{20}$ - 102° (c 1.7, HCONMe₂) with an enrichment factor of 72.2 ¹³C atom $\frac{9}{9}$ excess (calculated from mass spectral data), besides some minor products. The glycoside **(9)** was hydrolysed with dil. HC1 to give lucidin **(10).** 13C N.m.r. data for **(9)** and **(10)** are in the Table. For both compounds

a'^{-d}' Assignments for signals with the same letter are exchangeable.

signals assignable to the carbonyl carbons appear at δca . 186 and **181** p.p.m., and in both the cases the lower-field signals are strongly enhanced. These findings indicate that the 13C-label of the precursor **(6)** was incorporated into the hydrogen-bonded C-9 carbonyl carbon of the anthraquinone. The ¹H n.m.r. spectrum (in $CD₃SOCD₃$) of lucidin primeveroside **(9)** also supports this conclusion.

The natural glycoside (9) shows in its ¹H n.m.r. spectrum typical A_2B_2 type signals at δ 7.81–7.98 and 8.06–8.26 for the protons at C-5, C-6, C-7, and C-8, while enriched **(9)** isolated from the above-mentioned cell culture shows a deformed pattern for the lower-field $B₂$ part of the signals which could be attributed to the long-range coupling of one of the protons with the vicinal 13C. In contrast, the 13C enriched glycoside **(9)** does not show any change in the shape of the signal (br. s, δ 7.46) for the C-4 proton. Based on these findings, the enriched carbon occupies position **9,** but not **10.** All these results prove the validity of the hitherto postulated biosynthetic pathway of anthraquinones in Rubiaceous plants *via* 1,4-dihydroxy-2-

J.C.S. **CHEM. COMM., 1979 959**

compounds **(4)** and *(5)* in the site of prenylation. It is likely that mollugin **(11)s,13** and furomollugin **(12)14** are also biosynthesized in plants from *(8).*

naphthoic acid (7) and 1,4-dihydroxy-3-prenyl-2-naphthoic **We thank the Bundesminister für Forschung und acid (8)** (Scheme), which differs from the pathway for Technologie, Bonn and the Japan Society for the Promotion Technologie, Bonn and the Japan Society for the Promotion of Science for financial support.

(Received, 28th June **1979;** *Corn.* **692.)**

- ¹ R. H. Thomson in 'Naturally Occurring Quinones,' Academic Press. London and New York, 1971, pp. 367—535.
² E. Leistner, *Phytochemistry*, 1973, 12, 1669.
³ M. H. Zenk, H. El-Shagi, and U. Schulte, *Planta medica*,
-
-
-
-
- H.-J. Bauch and E. Leistner, *Planta medica.*, 1978, **33**, 105.
E. Leistner and M. H. Zenk, *Z. Naturforsch.*, 1967, **22b**, 865.
E. Leistner and M. H*. Z*enk, *Tetrahedron Letters*, 1971, 1677.
-
-
-
- ⁸ E. Leistner, *Phytochemistry*, 1973, 12, 337.
⁹ P. Dansette, Ph. D. Thesis, Paris University, 1972.
¹⁰ H. Inouye, S. Ueda, K. Inoue, T. Hayashi, and T. Hibi, *Chem. Pharm. Bull. (Japan)*, 1975, 23, 2523.
-
- ¹¹ R. M. Baldwin, C. D. Snyder, and H. Rapoport, *Biochemistry*, 1974, 13, 1523.
¹² Y. Ogihara, O. Inoue, H. Otsuka, K. Kawai, T. Tanimura, and S. Shibata, *J. Chromatography*, 1976, 128, 218.
¹³ H. Schildknecht, F.
-
- **1' H.** Schildknecht and F. Straub, *Annalen,* **1976, 1772.**